I was thinking about ARM at one point, but you’ve got a couple of major drawbacks.
Most ARM devices are SoC, and where they get some of their cost and power savings. That’s kinda the opposite of modular.
ARM running ARM binaries can be more-power-efficient than x86 running x86 binaries. An ARM platform can run x86 binaries via x86 emulation, but then your power benefits go away (probably get worse power efficiency). For Windows, I assume that there’s some form of OS-level emulation, but you’ve got a lot of binary software out there. For Linux, if you’re using all open-source software that can be rebuilt for ARM, and assuming that you have ARM driver support, then you could maybe run only ARM binaries. But if you want to, for example, use Steam, then you are going to be using binary-only x86 software. Now, okay, that depends a lot on your use case, but that may be a real drawback if you play games on the thing.
That also sounds kind of like compatibility is still limited – they’re saying that some ARM platforms can’t do 32-bit x86 binaries, at least two years ago. Dunno if that’s still an issue.
I don’t see what’s non-modular about ARM. Most of the stuff that’s user-serviceable on a Framework laptop would be serviceable with ARM:
ports are all USB-C
drives are NVMe, SATA, or PCIe - Pine64 has boards with each (IIRC)
GPU is PCIe - again, Pine64 has that on their RockPro64
The only difference is RAM, and theoretically they could design a socketable SOC to reuse existing boards (not sure what happened to Project Skybridge). The only difference is RAM, at least for the user, and I really don’t think that’ll be a deal-breaker. Modern x86 chips are already essentially SOCs anyway…
I was thinking about ARM at one point, but you’ve got a couple of major drawbacks.
Most ARM devices are SoC, and where they get some of their cost and power savings. That’s kinda the opposite of modular.
ARM running ARM binaries can be more-power-efficient than x86 running x86 binaries. An ARM platform can run x86 binaries via x86 emulation, but then your power benefits go away (probably get worse power efficiency). For Windows, I assume that there’s some form of OS-level emulation, but you’ve got a lot of binary software out there. For Linux, if you’re using all open-source software that can be rebuilt for ARM, and assuming that you have ARM driver support, then you could maybe run only ARM binaries. But if you want to, for example, use Steam, then you are going to be using binary-only x86 software. Now, okay, that depends a lot on your use case, but that may be a real drawback if you play games on the thing.
googles
https://old.reddit.com/r/linux_gaming/comments/tqem55/you_can_now_run_steam_games_with_proton_on_an_arm/
That also sounds kind of like compatibility is still limited – they’re saying that some ARM platforms can’t do 32-bit x86 binaries, at least two years ago. Dunno if that’s still an issue.
I don’t see what’s non-modular about ARM. Most of the stuff that’s user-serviceable on a Framework laptop would be serviceable with ARM:
The only difference is RAM, and theoretically they could design a socketable SOC to reuse existing boards (not sure what happened to Project Skybridge). The only difference is RAM, at least for the user, and I really don’t think that’ll be a deal-breaker. Modern x86 chips are already essentially SOCs anyway…