• iAvicenna@lemmy.world
    link
    fedilink
    English
    arrow-up
    75
    ·
    1 month ago

    I see, charge is a class method and not an instance method. Well played universe creator.

    • Nougat@fedia.io
      link
      fedilink
      arrow-up
      31
      arrow-down
      3
      ·
      1 month ago

      No, electrons are much smaller than protons, which are slightly smaller than neutrons.

    • bstix@feddit.dk
      link
      fedilink
      English
      arrow-up
      22
      ·
      1 month ago

      The whole thing is an abstraction. The nucleus isn’t actually tiny ball shaped things mashed together, but rather cloudy stuff which would probably not be identical if we could actually see them. The quarks that make up protons and neutrons are considered elementary particles and identical, but they don’t move around much unless energy is used to split them.

      The electron however is an elementary particle that moves outside of the nucleus and can move from one atom to another. So the hypothesis is that if we could follow one electron from the big bang to the end of the universe, and this electron could move both forwards and backwards in time, it would potentially be enough with just one.

      It probably doesn’t hold up very well, but it’s an interesting thought experiment.

      • dQw4w9WgXcQ@lemm.ee
        link
        fedilink
        English
        arrow-up
        5
        ·
        1 month ago

        It’s one of those things which would be pretty much impossible to prove, but it holds well with the effects we currently see. Electrons can annihilate by colliding with positrons. But the collision we see could be a single electron changing from moving forwards in time to moving backwards in time. It holds that it’s the same particle in the equations by cancelling out the minus sign of the charge with the minus sign in the time. So while we see a collision, the electron would just see itself changing charge and start moving backwards in time instead.

        It’s a beautiful hypothesis, and fills me with chills to think about the electron “experiencing” all of history an unimmaginable amount of times.

    • AnarchistArtificer@slrpnk.net
      link
      fedilink
      English
      arrow-up
      9
      ·
      1 month ago

      A big part of quantum mechanics is the fact that matter can show wave-like behaviour, which sort of breaks a bunch of “rules” that we have from classical physics. This only is relevant if we’re looking at stuff at a teensy tiny scale.

      Someone else has already mentioned that electrons are a fair bit smaller than protons and neutrons (around 1840 times smaller) and this means they tend to have a smaller momentum than protons or neutrons, which means they have a larger wavelength, which was easier to measure experimentally. That’s likely why electrons were a part of this theory, because they’re small enough that they’re sort of a perfect way to study the idea of things that are both particle and wave, but also neither. In 1940, quantum mechanics and particle physics were super rapidly moving fields, where our knowledge hadn’t congealed much yet. What was clear was that electrons get up to some absolute nonsense behaviour that broke our understanding of how the world worked.

      I like the results of some of the worked examples here: https://www.chemteam.info/Electrons/deBroglie-Equation.html , especially the one where they work out what the wavelength of a baseball would be (because that too, could theoretically act like a wave, it would just have an impossibly small wavelength)

      TL;DR: electrons are smaller than protons/neutrons Smaller = larger wavelength Larger wavelength = easier to make experiments to see wave-like behaviour from the particle Therefore electrons were useful in figuring out how the heck a particle can have a wavelength and act like a wave

        • AnarchistArtificer@slrpnk.net
          link
          fedilink
          English
          arrow-up
          3
          ·
          1 month ago

          I like the way one of my university textbooks frames the particle wave duality thing: “A single pure wave has a perfectly defined wavelength, and thus an exact energy, but has no position. […] [Whereas a classical particle] would have a perfectly defined position but no definable wavelength and thus an undefined energy” ([1][2])

          I am currently in my bed. I have a lot to do today, but I’m not sure how much I will get done because I don’t know how much energy have. Thus I conclude you are right and that I am clearly a particle.


          ^([1]: Principles and Problems in Physical Chemistry for Biochemists, Price, Dwek, Radcliffe & Wormald, p282)

          ^([2]: I’m practicing being more diligent with citations, in hope that good habits will make it easier when referencing is actually important)

    • athairmor@lemmy.world
      link
      fedilink
      English
      arrow-up
      5
      ·
      1 month ago

      Maybe, because we can measure the number of protons and neutrons with an ion accelerator? I don’t know if the something similar can be done with electrons.

  • gamermanh@lemmy.dbzer0.com
    link
    fedilink
    English
    arrow-up
    39
    ·
    1 month ago

    Create the parent entity electron, give it properties, then clone as needed

    That’s just efficient world design, guys, why make assets different if you don’t gotta, yakno?

    • Duamerthrax@lemmy.world
      link
      fedilink
      English
      arrow-up
      20
      ·
      edit-2
      1 month ago

      You would need a positron to do that and all you might have done is reflect it backwards in time.

      If you could “remove” it by placing it into another dimension, it might disprove the theory, but the causal domain might be larger then previous assumed.

      This is one of those Math Theories that isn’t technically a Science Theory. We can make a mathematical model, but it’s untestable.

          • CileTheSane@lemmy.ca
            link
            fedilink
            English
            arrow-up
            2
            ·
            edit-2
            1 month ago

            That’s why it would fuck over causality. If I destroyed 1 that could be the natural end of the electrons “life” of bouncing back and forth through time. I would need to destroy a 2nd which would then have to be the same electron from earlier in it’s timeline.

            • iii@mander.xyz
              link
              fedilink
              English
              arrow-up
              1
              ·
              edit-2
              1 month ago

              Ah, you’re viewing it as a timetravellers’ dilemma.

              My view was more that we’re an observer in the lagrangian solution to the differential equation we call life. The electron, being a constant in the equation. Remove the electron, you alter the equation, therefore destroying known life.

        • Buddahriffic@lemmy.world
          link
          fedilink
          English
          arrow-up
          1
          ·
          1 month ago

          Careful, reality might just destroy you instead to avoid the paradox. I suspect that’s how it avoids all of the paradoxes if time travel is possible in a single timeline universe. And this idea isn’t compatible with the multiple timeline time travel idea (otherwise the electron will end up in a different timeline each time it jumps backwards).

      • AngryCommieKender@lemmy.world
        link
        fedilink
        English
        arrow-up
        3
        arrow-down
        1
        ·
        1 month ago

        To destroy every other quantum state of the single electron, wouldn’t you need to destroy it at its beginning state? The end state would be at/just after the heat death of the universe, so it wouldn’t really make any difference then.

        • CileTheSane@lemmy.ca
          link
          fedilink
          English
          arrow-up
          2
          ·
          1 month ago

          The end state doesn’t have to be at the end of time if the electron can travel backwards in time. It can go to the end, head back towards the beginning, and get destroyed somewhere in between.

          Strictly speaking it would have to get destroyed at some point, or at least have something stop it from going back and forth, otherwise the universe would be all electron.

      • CileTheSane@lemmy.ca
        link
        fedilink
        English
        arrow-up
        1
        ·
        1 month ago

        E=mc2 is the equation for how much energy is created by destroying a given amount of mass.

        • NιƙƙιDιɱҽʂ@lemmy.world
          link
          fedilink
          English
          arrow-up
          3
          ·
          edit-2
          1 month ago

          No, E=mc2 demonstrates that mass and energy are one in the same. When converting mass to energy, nothing is being destroyed, merely changing state. As far as we are aware, the absolute destruction or removal of energy, and thereby matter, from the Universe is not possible.

  • iii@mander.xyz
    link
    fedilink
    English
    arrow-up
    24
    ·
    1 month ago

    We are all one consciousness experiencing itself subjectively.

    • Cascio@lemmy.world
      link
      fedilink
      English
      arrow-up
      13
      ·
      1 month ago

      Life is just a dream, and we are the imagination of ourselves. Here’s Tom with the weather!

      • Iron Lynx@lemmy.world
        link
        fedilink
        English
        arrow-up
        1
        ·
        1 month ago

        Sorry mate, Tom couldn’t make it, so here we have Bill.

        Weather update: it’s raining rocks from outer space

  • LovableSidekick@lemmy.world
    link
    fedilink
    English
    arrow-up
    19
    ·
    1 month ago

    Shouldn’t be just electrons though - don’t all instances of any given type of subatomic particle have the same mass and charge?

  • athairmor@lemmy.world
    link
    fedilink
    English
    arrow-up
    17
    ·
    1 month ago

    So, if route all of the electricity in my house through my body, how far can I travel in time? What about a car battery’s worth?

    • PoopBuffet@lemmy.world
      link
      fedilink
      English
      arrow-up
      13
      ·
      1 month ago

      Na, we got those too. Muons, tauons and neutrinos. But the universe unfortunately hasn’t imploded, meaning I have to go to work and pay taxes and shit.

  • itslilith@lemmy.blahaj.zone
    link
    fedilink
    English
    arrow-up
    15
    ·
    1 month ago

    It is an interesting theory, for sure. Instead of countless 3-dimensional particles, you have a single (or very few) 4-dimensional objects. You can imagine it like a sheet of fabric that is our present, with everything above the sheet being the future, everything below the past. When you want to sew a thread (our electron) through the sheet, you need to pierce the fabric, but to do it again, you first need to piece it the other way, giving you a positron. You can create or destroy arbitrary many of these, but you need create or destroy one of each every time. More interestingly, it is exactly determined which two will annihilate each other, as the allegorical loop of thread gets pulled tighter and tighter until it gets pulled though the sheet. The universe would be deterministic.

    I’m sure there’s a myriad of contradictions to modern QM and particle physics, but it’s fun to think about nonetheless

  • Technotica@lemmy.world
    link
    fedilink
    English
    arrow-up
    12
    ·
    1 month ago

    One reason why that is probably not true is because there are less positrons but if it were true they should number the same as electrons, right?

    But if electrons are moving along the same “time direction” as we are and positrons are moving in the opposite “direction” then wouldn’t we expect there to be less protons? As we can’t measure the protons that already “passed” us? And we would measure more electrons as a some/many/all of the existing electrons are traveling alongside us?

    • Flying Squid@lemmy.worldOP
      link
      fedilink
      English
      arrow-up
      15
      arrow-down
      1
      ·
      1 month ago

      I think you may have put more thought into this than Feynman. But then he probably had someone waiting for him in bed…

      • TempermentalAnomaly@lemmy.world
        link
        fedilink
        English
        arrow-up
        1
        ·
        1 month ago

        Positrons are different from protons. Both have a positive charge, but a positron is an elementary particle of a similar mass as an electron. They are rather rare in nature which OP was noting. Protons are made of three elementary particles, much heavier than positrons, and are, I imagine, present in nature in about the same order of magnitude as electrons.