Thanks to @General_Effort@lemmy.world for the links!
Here’s a link to Caltech’s press release: https://www.caltech.edu/about/news/thinking-slowly-the-paradoxical-slowness-of-human-behavior
Here’s a link to the actual paper (paywall): https://www.cell.com/neuron/abstract/S0896-6273(24)00808-0
Here’s a link to a preprint: https://arxiv.org/abs/2408.10234
But our brains are not digital, so they cannot be measured in binary bits.
There is no other definition of bit that is valid in a scientific context. Bit literally means “binary digit”.
Information theory, using bits, is applied to the workings of the brain all the time.
How do you know there is no other definition of bit that is valid in a scientific context? Are you saying a word can’t have a different meaning in a different field of science?
Because actual neuroscientists understand and use information theory.
Actual neuroscientists define their terms in their papers. Like the one you refuse to read because you’ve already decided it’s wrong.
Actual neuroscientists do not create false definitions for well defined terms. And they absolutely do not need to define basic, unambiguous terminology to be able to use it.
Please define ‘bit’ in neuroscientific terms.
Binary digit, or the minimum additional information needed to distinguish between two different equally likely states/messages/etc.
It’s same usage as information theory, because information theory applies to, and is directly used by, virtually every relevant field of science that touches information in any way.
Brains are not binary. I asked you to define it in neuroscientific terms.
Indeed not. So using language specific to binary systems - e.g. bits per second - is not appropriate in this context.