Yeah, we can still however analyze the statement f(x)=100x$/1x$ lim(x->inf) and clearly come to the conclusion that as the number of bills x approaches infinity will be equal to 100.
However, limes exists as a tool to avoid infinities and this exact problem when using calculus for practical applications - and as such it doesn’t apply here.
Screw that! I’m the man who’s gonna burn your house down! With the lemons! I’m gonna get my engineers to invent a combustible lemon that burns your house down!
Neither is bigger. Even “∞ x ∞” is not bigger than “∞”. Classical mathematics sort of break down in the realm of infinity.
Yeah, we can still however analyze the statement f(x)=100x$/1x$ lim(x->inf) and clearly come to the conclusion that as the number of bills x approaches infinity will be equal to 100.
However, limes exists as a tool to avoid infinities and this exact problem when using calculus for practical applications - and as such it doesn’t apply here.
What about lemons?
Mathematically speaking, they should be converted to lemonade.
Screw that! I’m the man who’s gonna burn your house down! With the lemons! I’m gonna get my engineers to invent a combustible lemon that burns your house down!
Depends on if there’s any lemon stealing whores around.
You’re the guy in the middle by the way.
This problem doesn’t involve cardinal numbers.
So it’s basically just a form of NaN?